Case-средства проектирования бд. Возможности проектирования бд, представляемые конкретными case-средствами



Скачать 445.96 Kb.
страница1/11
Дата28.05.2018
Размер445.96 Kb.
Название файлаБазы данных.docx
  1   2   3   4   5   6   7   8   9   10   11

Оглавление


Введение. 2

CASE-средства проектирования БД. Возможности проектирования БД, представляемые конкретными CASE-средствами (MySQL Workbench). 9

Заключение. 18

Список использованной литературы. 19




Введение.

Современная жизнь немыслима без эффективного управления. Важной категорией являются системы обработки информации, от которых во многом зависит эффективность работы любого предприятия или учреждения. Такая система должна:

· обеспечивать получение общих и/или детализированных отчетов по итогам работы;

· позволять легко определять тенденции изменения важнейших показателей;

· обеспечивать получение информации, критической по времени, без существенных задержек;

· выполнять точный и полный анализ данных.

Современные СУБД в основном являются приложениями Windows, так как данная среда позволяет более полно использовать возможности персональной ЭВМ, нежели среда DOS. Снижение стоимости высокопроизводительных ПК обусловил не только широкий переход к среде Windows, где разработчик программного обеспечения может в меньше степени заботиться о распределении ресурсов, но также сделал программное обеспечение ПК в целом и СУБД в частности менее критичными к аппаратным ресурсам ЭВМ.

Среди наиболее ярких представителей систем управления базами данных можно отметить: LotusApproach, MicrosoftAccess, BorlanddBase, BorlandParadox, MicrosoftVisualFoxPro, MicrosoftVisualBasic, а также баз данных Microsoft SQL Server и Oracle, используемые в приложениях, построенных по технологии «клиент-сервер». Фактически, у любой современной СУБД существует аналог, выпускаемый другой компанией, имеющий аналогичную область применения и возможности, любое приложение способно работать со многими форматами представления данных, осуществлять экспорт и импорт данных благодаря наличию большого числа конвертеров. Общепринятыми, также, являются технологи, позволяющие использовать возможности других приложений, например, текстовых процессоров, пакетов построения графиков и т.п., и встроенные версии языков высокого уровня (чаще – диалекты SQL и/или VBA) и средства визуального программирования интерфейсов разрабатываемых приложений. Поэтому уже не имеет существенного значения на каком языке и на основе какого пакета написано конкретное приложение, и какой формат данных в нем используется. Более того, стандартом «де-факто» стала «быстрая разработка приложений» или RAD (от английского RapidApplicationDevelopment), основанная на широко декларируемом в литературе «открытом подходе», то есть необходимость и возможность использования различных прикладных программ и технологий для разработки более гибких и мощных систем обработки данных. Поэтому в одном ряду с «классическими» СУБД все чаще упоминаются языки программирования VisualBasic 4.0 и Visual C++, которые позволяют быстро создавать необходимые компоненты приложений, критичные по скорости работы, которые трудно, а иногда невозможно разработать средствами «классических» СУБД. Современный подход к управлению базами данных подразумевает также широкое использование технологии «клиент-сервер».

Таким образом, на сегодняшний день разработчик не связан рамками какого-либо конкретного пакета, а в зависимости от поставленной задачи может использовать самые разные приложения. Поэтому, более важным представляется общее направление развития СУБД и других средств разработки приложений в настоящее время.

Основы проектирования баз данных. Логическое проектирование.

Предметная область - часть реального мира, подлежащая изучению с целью организации управления и, в конечном счете, автоматизации. Предметная область представляется множеством фрагментов, например, предприятие - цехами, дирекцией, бухгалтерией и т.д. Каждый фрагмент предметной области характеризуется множеством объектов и процессов, использующих объекты, а также множеством пользователей, характеризуемых различными взглядами на предметную область.

В теории проектирования информационных систем предметную область (или, если угодно, весь реальный мир в целом) принято рассматривать в виде трех представлений:

представление предметной области в том виде, как она реально существует как ее воспринимает человек (имеется в виду проектировщик базы данных) как она может быть описана с помощью символов.

Т.е. говорят, что мы имеем дело с реальностью, описанием (представлением) реальности и с данными, которые отражают это представление.

Данные, используемые для описания предметной области, представляются в виде трехуровневой схемы (так называемая модель ANSI/SPARC)

Внешнее представление (внешняя схема) данных является совокупностью требований к данным со стороны некоторой конкретной функции, выполняемой пользователем. Концептуальная схема является полной совокупностью всех требований к данным, полученной из пользовательских представлений о реальном мире. Внутренняя схема - это сама база данных.

Отсюда вытекают основные этапы, на которые разбивается процесс проектирования базы данных информационной системы:

Инфологическое проектирование

Инфологическая модель отображает реальный мир в некоторые понятные человеку концепции, полностью независимые от параметров среды хранения данных.

Существует множество подходов к построению таких моделей: графовые модели, семантические сети, модель «сущность-связь» и т.д. Наиболее популярной из них оказалась модель «сущность-связь».

Инфологическая модель должна быть отображена в компьютеро - ориентированную даталогическую модель, «понятную» СУБД. В процессе развития теории и практического использования баз данных, а также средств вычислительной техники создавались СУБД, поддерживающие различные даталогические модели.

Сначала стали использовать иерархические даталогические модели. Простота организации, наличие заранее заданных связей между сущностями, сходство с физическими моделями данных позволяли добиваться приемлемой производительности иерархических СУБД на медленных ЭВМ с весьма ограниченными объемами памяти. Но, если данные не имели древовидной структуры, то возникала масса сложностей при построении иерархической модели и желании добиться нужной производительности.

Сетевые модели также создавались для мало ресурсных ЭВМ. Это достаточно сложные структуры, состоящие из «наборов» – поименованных двухуровневых деревьев. «Наборы» соединяются с помощью «записей-связок», образуя цепочки и т.д.

При разработке сетевых моделей было выдумано множество «маленьких хитростей», позволяющих увеличить производительность СУБД. Но существенно усложнивших последние.

Прикладной программист должен знать массу терминов, изучить несколько внутренних языков СУБД, детально представлять логическую структуру базы данных для осуществления навигации среди различных экземпляров, наборов, записей и т.п. Один из разработчиков операционной системы UNIX сказал: «Сетевая база – это самый верный способ потерять данные».

Сложность практического использования иерархических и сетевых СУБД заставляла искать иные способы представления данных. В конце 60-х годов появились СУБД на основе инвертированных файлов, отличающиеся простотой организации и наличием весьма удобных языков манипулирования данными. Однако такие СУБД обладают рядом ограничений на количество файлов для хранения данных, количество связей между ними, длину записи и количество ее полей.

Физическая организация данных оказывает основное влияние на эксплуатационные характеристики БД. Разработчики СУБД пытаются создать наиболее производительные физические модели данных, предлагая пользователям тот или иной инструментарий для поднастройки модели под конкретную БД.

Разнообразие способов корректировки физических моделей современных промышленных СУБД не позволяет рассмотреть их в этом разделе.

Первая нормальная форма

Отношение называется нормализованным или приведенным к первой нормальной форме,если все его атрибуты простые (далее неделимы). Преобразование отношения к первой нормальной форме может привести к увеличению количества реквизитов (полей) отношения и изменению ключа.

Например, отношение Студент = (Номер, Фамилия, Имя, Отчество, Дата, Группа) наводится в первой нормальной форме.

Вторая нормальная форма

Чтобы рассмотреть вопрос приведения отношений ко второй нормальной форме, необходимо дать пояснения к таким понятиям, как функциональная зависимость и полная функциональная зависимость.

Описательные реквизиты информационного объекта логически связаны с общим для них ключом, эта связь носит характер функциональной зависимости реквизитов. Функциональная зависимость реквизитов — зависимость, при которой экземпляре информационного объекта определенному значению ключевого реквизита соответствует только одно значение описательного реквизита. Такое определение функциональной зависимости позволяет при анализе всех взаимосвязей реквизитов предметной области выделить самостоятельные информационные объекты.

В случае составного ключа вводится понятие функционально полной зависимости. Функционально полная зависимость не ключевых атрибутов заключается в том, что каждый не ключевой атрибут функционально зависит от ключа, но не находится в функциональной зависимости ни от какой части составного ключа. Отношение будет находиться во второй нормальной форме, если оно находится в первой нормальной форме, и каждый не ключевой атрибут функционально полно зависит от составного ключа.

Третья нормальная форма

Понятие третьей нормальной формы основывается на понятии нетранзитивной зависимости. Транзитивная зависимость наблюдается в том случае, если один из двух описательных реквизитов зависит от ключа, а другой описательный реквизит зависит от первого описательного реквизита.

Отношение будет находиться в третьей нормальной форме, если оно находится во второй нормальной форме, и каждый неключевой атрибут нетранзитивно зависит от первичного ключа. Для устранения транзитивной зависимости описательных реквизитов необходимо провести «расщепление» исходного информационного объекта. В результате расщепления часть реквизитов удаляется из исходного информационного объекта и включается в состав других (возможно, вновь созданных) информационных объектов.

Все информационные объекты предметной области связаны между собой. Различаются связи нескольких типов, для которых введены следующие обозначения:

· один к одному (1:1);

· один ко многим (1 : М);

· многие ко многим (М : М).

Связь один к одному (1:1) предполагает, что в каждый момент времени одному экземпляру информационного объекта А соответствует не более одного экземпляра информационного объекта В и наоборот.

При связи один ко многим (1:М) одному экземпляру информационного объекта А соответствует 0, 1 или более экземпляров объекта В, но каждый экземпляр объекта В связан не более чем с 1 экземпляром объекта А. Графически данное соответствие имеет вид.

Связь многие ко многим (М:М) предполагает, что в каждый момент времени одному экземпляру информационного объекта А соответствует 0, 1 или более экземпляров объекта В и наоборот.



Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   10   11


База данных защищена авторским правом ©2docus.ru 2017
обратиться к администрации

    Главная страница
Контрольная работа
Курсовая работа
Лабораторная работа
Рабочая программа
Методические указания
Пояснительная записка
Методические рекомендации
Учебное пособие
Практическая работа
Общая характеристика
Теоретические основы
Теоретические аспекты
Дипломная работа
Федеральное государственное
Теоретическая часть
Самостоятельная работа
Физическая культура
Технологическая карта
Краткая характеристика
квалификационная работа
Техническое задание
Гражданское право
Производственная практика
государственное бюджетное
Выпускная квалификационная
История развития
Общие положения
прохождении производственной
Методическая разработка
Учебная программа
Методическое пособие
Правовое регулирование
Техническое обслуживание
Общие требования
Операционная система
Направление подготовки
Экономическая теория
Управление образования
Решение задач
Экологическая обстановка
Теория государства
Конституционное право
Экономическая безопасность
Основная часть
Отечественная история
Проверочная работа
Технологические процессы
Структурная схема
Системное программирование
Управление персоналом
создания отчетов